High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers
نویسندگان
چکیده
Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25-1 effective depth of the section column. Furthermore, the axial load-strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load-strain curves were carried out.
منابع مشابه
بررسی تأثیر محصورشدگی بتن در رفتار غیرخطی دیوارهای برشی بتنآرمه بالدار
Flanged shear walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. They must be carefully designed to provide not only adequate strength, but also sufficient ductility to avoid brittle failure under strong lateral lo...
متن کاملEffect of Steel Confinement on Behavior of Reinforced Concrete Frame
The strength and ductility of concrete improve under multi-axial compressive stress due to confinement effect. Some parameters are effective for considering the confinement in concrete and various stress-strain models were developed by different researchers. Longitudinal and transverse reinforcement steels can influence on confinement in reinforced concrete members. In this paper, various stres...
متن کاملInvestigating of the Effect of Concrete Confinement on the Axial Performance of Circular Concrete Filled Double-Skin Steel Tubular (CFDST) Long Columns
In this study, the co-operation of steel and concrete in composite columns is considered. Using numerical modeling to study the behavior of these sections, a new type of sections, namely Concrete Filled Double-Skin steel Tubular (CFDST) columns, is introduced. The parameters and techniques that influence the numerical simulation that bring this modeling closer to...
متن کاملارزیابی و مقایسهی رفتار ستونهای بتن مسلح دایرهای و مربعی تقویت شده با جاکتهای فولادی در برابر انفجار
Evaluation and Comparison of Behavior of Steel Jacketed RC Columns with Circular and Square Sections under Blast Loading Reinforced concrete (RC) structures are widely used in urban buildings and infrastructures, and these are always subjected to explosions caused by intentional or unintentional accidents. Among the structural members, columns are key load carrier elements. In this paper, b...
متن کاملFire behavior of axially loaded slender high strength concrete - filled tubular columns
This paper describes sixteen fire tests conducted on slender circular hollow section columns filled with normal and high strength concrete, subjected to concentric axial loads. The test parameters were the nominal strength of concrete (30 and 80 MPa), the infilling type (plain concrete, reinforced concrete and steel fiber reinforced concrete) and the axial load level (20% and 40%). The columns ...
متن کامل